Indecomposable laplacian integral graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolution of indecomposable integral flows on signed graphs

It is well-known that each nonnegative integral flow of a directed graph can be decomposed into a sum of nonnegative graph circuit flows, which cannot be further decomposed into nonnegative integral sub-flows. This is equivalent to saying that indecomposable flows of graphs are those graph circuit flows. Turning from graphs to signed graphs, the indecomposable flows are much richer than that of...

متن کامل

Laplacian Integral Graphs with Maximum Degree 3

A graph is said to be Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. Using combinatorial and matrix-theoretic techniques, we identify, up to isomorphism, the 21 connected Laplacian integral graphs of maximum degree 3 on at least 6 vertices.

متن کامل

Classification of Conformally Indecomposable Integral Flows on Signed Graphs

A conformally indecomposable flow f on a signed graph Σ is a nonzero integral flow that cannot be decomposed into f = f1 + f2, where f1, f2 are nonzero integral flows having the same sign (both ≥ 0 or both ≤ 0) at every edge. This paper is to classify at integer scale conformally indecomposable flows into characteristic vectors of Eulerian cycle-trees — a class of signed graphs having a kind of...

متن کامل

Partially critical indecomposable graphs

Given a graph G = (V, E), with each subset X of V is associated the subgraph G(X) of G induced by X. A subset I of V is an interval of G provided that for any a, b ∈ I and x ∈ V \ I , {a, x} ∈ E if and only if {b, x} ∈ E. For example, ∅, {x}, where x ∈ V , and V are intervals of G called trivial intervals. A graph is indecomposable if all its intervals are trivial; otherwise, it is decomposable...

متن کامل

Minimal indecomposable graphs

Let G=(V,E) be a graph, a subset X of V is an interval of G whenever for a, b E X and xE V X , (a,x)EE (resp. (x,a)EE) if and only if (b,x)EE (resp. (x,b)EE). For instance, 0, {x}, where x E V, and V are intervals of G, called trivial intervals. A graph G is then said to be indecomposable when all of its intervals are trivial. In the opposite case, we will say that G is decomposable. We now int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2008

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.09.025